\qquad

Triangle $A B C$ has vertices $\mathbf{A}(-2,4), \mathbf{B}(\mathbf{2}, \mathbf{2})$, and $C(\mathbf{3}, \mathbf{7})$.
a. Plot the points on the grid below.

b. Find the length of AB. Show your work.
c. Find the length of $B C$. Show your work.
d. Find the length of AC. Show your work.
e. Using your answers from b-d, determine if the triangle is a scalene triangle, an isosceles triangle, or an equilateral triangle. Explain how you know.
f. Is triangle $A B C$ a right triangle. Justify your answer.
g. Find the midpoint of $A B$. Call this point D and plot it on the grid in part a.
h. Find the midpoint of $B C$. Call this point E and plot it on the grid in part a.
i. Find the slope of $D E$, that is the slope between the two points you found in parts f and g.
j. Find the slope of $A C$.
k. Compare the two slopes you found in parts h and i. What can you conclude about the segment DE and AC?
2. The vertices of a quadrilateral are $A(-1,4), B(4,3), C(1,1)$, and $D(6,0)$.
a. Plot the points on the grid below.

b. Determine if the quadrilateral is a parallelogram. Show your work and explain your reasoning.
3. Classify each quadrilateral as a parallelogram, rectangle, rhombus, square, kite, trapezoid, or isosceles trapezoid. Be as specific as possible. Show your work to justify your answer.
a. $W(4,1), X(1,5), Y(-3,2), Z(0,-2)$

b. $M(-3,3) A(7,3) T(3,6) H(1,6)$

c. $Q(-3,1) P(3,3) R(5,7) S(-1,5)$

4. Graph $A(3,2), B(7,0), C(11,2)$ and $D(7,4)$. Prove that quadrilateral $A B C D$ is a rhombus.

Find the midpoint of each diagonal.

Do the diagonals bisect each other? Explain your reasoning.

For problems 5-7 classify each quadrilateral as a parallelogram, rectangle, rhombus, square, kite, trapezoid, or isosceles trapezoid.
5. $W(-4,-2), X(5,4), Y(7,1), Z(-2,-5)$

6. $\mathrm{M}(-3,2), \mathrm{A}(-1,6), \mathrm{T}(1,0), \mathrm{H}(-1,-4)$

7. $F(-2,3), I(3,4), S(4,-1), H(-1,-2)$

Replace each blank with always, sometimes or never.
2. A Rectangle \qquad has four right angles.
3. The diagonals of a parallelogram \qquad bisect the opposite angles.
4. The two legs of a trapezoid are \qquad congruent.
5. A parallelogram \qquad has only one pair of opposite sides parallel.

